Build4 Scale U.S. Department of Energy

Detailed Design Package

Module 2A Bill of Materials and Bill of Process

www.build4scale.org

Motivation

Why is this module important?

□ Even the simplest products are typically complex in structure

- If bill of materials (BOM), bill of process (BOP), and engineering drawings are not crystal clear to the innovator and the manufacturer, it can result wasted money and/or products that are improperly constructed
- □ It's crucial to know the answers to:
 - —What and how many components form the product?
 - —What are the steps/sequence for fabricating the product?
 - —How can the product continue to be produced effectively as its complexity increases?

Module Outline

Learning objectives

Product hierarchy, bill of materials (BOM)

Process planning, routing sheet, bill of process (BOP)

□ Engineering drawing:

-Component level

-Assembly level

-Interpreting engineering drawings

□ Case studies

Learning Objectives

LO1: Identify product hierarchy and assembly plan
 LO2: Develop appropriate process plan for components
 LO3: Assess engineering drawings for components

What This Module Addresses

The relationship between BOM, BOP, and engineering drawings
Basic terminology of BOM, BOP, and engineering drawings
Some existing online tools to assist in creating a BOM and a BOP
How to manage BOM generation for complex products

How they all relate

BOM and **BOP**

These 3 blocks must be considered simultaneously!

U.S. DEPARTMENT OF ENERGY • OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY

How they all relate

BOM and **BOP**

Engineering and assembly drawing provides:

- Visual representation of product and components
- Fit, tolerances, and assembly specifications

How they all relate

BOM and **BOP**

Bill of process (BOP) addresses:

Processes that produce the product and their sequence
 Specifications and parameters of each process step

How they all relate

BOM and **BOP**

Bill of materials (BOM) addresses:

- Components forming the product
- Production time per component

Bill Of Materials

Basics

□ Bill of materials (BOM): Lists quantities of components, ingredients, and materials required to make a product

Integrates product hierarchy through parent/child delineation

Levels of a product:

- □ Parent: End item (or final product)
- Children: Raw materials, components, and sub-assemblies

Demand may depend on product levels:

- Parent: Independent demand (external to the system)
- Children: Dependent demand (internal to the system)—Demand for an item depends on the demand for items "higher up" on the the BOM

Bill Of Materials

BOM generation components

Low-level coding (LLC):

- A number that identifies the lowest level at which a specific item exists in the BOM
- Allows for easily computing the requirements of an item existing at different levels of the BOM

BOM processor:

- Essential component in most commercial packages; maintains the BOM and automatically assigns LLCs
- □ Is essential for products with large BOMs (e.g., automobiles with approximately 30,000 components)

Bill Of Materials Tools

Online BOM tools:

- Build and generate BOMs in a standard user-friendly environment
- □ Scan the BOM for duplicates or redundant parts
- □ Generate BOM graphical representations
- Enable collaboration across an organization

Examples: Dragon Standard BOM is a free chrome extension for creating BOMs. Commercial solutions include Arena Solutions' Product Lifecycle Management (PLM), Mouser Electronics' Forte, and IQMS Enterprise Resource Planning (ERP) software.

BOM and **BOP**

Bill Of Materials

Example – BOM software

А	В	С	D	E	F	G	Н	I.	J	К	L	М
SCANNED?	Part Name	# of STL s	Min GAUGE (mm)	Material_ SPEC.	Weight _(kgs) (Each)	Weight_ Check (Vehicle)	Part Type (Purchased, Purchased Modified, or New)	Piece Cost	Material Selection	Tooling Cost Style	ng Release Date	Engineering Release Date
	BRAKES					76.686						3/15/2017
R	ABS_CONTROL_MODULE	1	SOLID	ALUMINUM/STEEL/PLASTIC	1.845		р					3/15/2017
N/A	ABS_CONTROL_MODULE_HARDWARE	N/A	N/A	STEEL	0.010		р					
N/A	BRAKE_FLUID	N/A	N/A	LIQUID	0.370		р					
N/A	BRAKE_LINES	N/A	N/A	STEEL	2.770		РМ					
N/A	BRAKE_LINES_HARDWARE	N/A	N/A	PLASTIC/STEEL	0.085		Р					
N/A	ELECTRONIC_BRAKE_BOOSTER_ASSY	N/A	N/A	N/A	5.260	5.245	р					
R	ELECTRONIC_BOOSTER	1	SOLID	ALUMINUM/PLASTIC	0.510		р					
N/A	ELECTRONIC_BRAKE_BOOSTER_HARDWARE	N/A	N/A	RUBBER/STEEL	0.020		р					
R	MASTER_CYLINDER	1	3.00	ALUMINUM/PLASTIC/STEEL	4.450		р					
R	MASTER_CYLINDER_RESERVOIR	1	MULTIPLE	PLASTIC	0.265		р					
	REAR_BRAKES					31.421						
	BRAKE_CALIPER_LH		SOLID	ALUMINUM	3.255		р					
	BRAKE_CALIPER_RH		SOLID	ALUMINUM	3.270		р					
	BRAKE_ROTOR_LH		SOLID	STEEL	9.385		р					
	BRAKE_ROTOR_RH		SOLID	STEEL	9.410		р					
	DUST_COVER_LH		1.48	ALUMINUM	0.360		N					
	DUST_COVER_RH		1.48	ALUMINUM	0.360		N					
	EMERGENCY_BRAKE_LH		SOLID	ALUMINUM/PLASTIC	2.445		р					
	EMERGENCY_BRAKE_RH		SOLID	ALUMINUM/PLASTIC	2.445		р					
	PARKING_BRAKE_CLIPS				0.001		р					
	REAR_BRAKE_HARDWARE				0.490		р					
▶ BIV	Brakes Bumpers Closures Cooling Electrical Ex	xterior	Plastic &	Trim Interior Plastic	& Trim	IP Pov	verTrain Seats Suspensi	on & Chas	isis (+)	÷ •		

Process Planning

Basics

Process planning is typically documented on a routing sheet, also known as a **bill of process** (BOP)

Process planning organizes these production-related elements:

- Methods of production
- Tooling
- Fixtures
- Machinery
- Sequence of operations
- Processing time of operations
- Assembly methods

Process Planning

Key considerations

Factors to be considered during process planning:

- Dimensions/size
- Surface finish
- Geometric shape
- Tolerance
- Material being processed
- Product value and urgency
- Manufacturing capabilities and resources available

Process Planning

Example

	A	ACE Inc.					
Part Part Origi Cheo	No. <u>S0125-F</u> Name: <u>Housing</u> nal: <u>S.D. Smart</u> Date: ked: <u>C.S. Good</u> Date:	<u>1/1/2017</u> 2/1/2017	Material: <u>steel 4340Si</u> Changes: <u>Date</u> : <u>Approved</u> : <u>T.C. Chang</u> Date : <u>2/14/2017</u>				
No.	Operation Description	Workstation	Setup	Tool	Time (Min)		
10	Mill bottom surface1	MILL01	see attach#1 for illustration	Face mill 6 teeth/4" dia	3 setup 5 machining		
20	Mill top surface	MILL01	see attach#1	Face mill 6 teeth/4" dia	2 setup 6 machining		
30	Drill 4 holes DRL02		set on surface1	twist drill 1/2" dia 2" long	2 setup 3 machining		

BOM and BOP

Example - Component level

Represent 3D objects in 2D by projecting the object's shape onto a plane

www.build4scale.org

Example – Internal features

This is important to distinguish between hollow components and solid components

3D view of a component

Indicates where the section was taken

Corresponding sectional view (demonstrating internal features)

www.build4scale.org

BOM and **BOP**

Dimensional tolerances

Dimensional tolerances:

Defined as the allowable errors on a specific dimension

Typically expressed as a range of values (i.e., the diameter of a hole is expressed as "3.5 inches ± 0.02," which means that the hole is acceptable as long as its actual manufactured diameter is between 3.48 and 3.52 inches in diameter)

Introduction to dimensional tolerances

Representing dimensional tolerances on a component's drawing

www.build4scale.org

U.S. DEPARTMENT OF ENERGY • OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY

Geometric tolerances

Geometric tolerances:

- Defined as the allowable errors on shapes, locations, and profiles (as opposed to size or dimensional tolerances)
- Specified on engineering drawings as a box with a leader connected to the feature of interest

Main types of geometric tolerances

FORM

PROFILE

ORIENTATION

LOCATION

RUNOUT

Example - Geometric tolerances

This feature control frame is read as: "The specified feature must lie perpendicular within a tolerance zone of 0.05 diameter at the maximum material condition, with respect to datum axis C

In other words, this places a limit on the amount of variation in perpendicularity between the feature axis and the datum axis. In a drawing, this feature control frame would accompany dimensional tolerances that control the feature size and position
BOM and BOP

Source: https://www.joshuanava.biz/engineering-4/geometric-tolerancing.html www.build4scale.org

Example – Flatness geometric tolerance

Engineering drawing indicating

desired flatness outcome

specifications of the engineering drawing

How to interpret them

7

27

Information on an engineering drawing or "blueprint":

□ Title

Version

Material

Projection type

🗆 Units

Scale

Other (i.e., assembly instructions, intellectual property, tolerances)

Example - Interpreting the blueprint

BOM and BOP

28

www.build4scale.org

Example – Assemblies

7

Assembly drawings are engineering drawing representations of the BOM

Enlarged on next slide

Example – Assemblies (cont.)

BOP Assembly Map

Example 1 - Initial waste pipe bracket

www.build4scale.org

BOP Assembly Map

Example 2

7

Design Profit Production Mapping Syntax

BOP Assembly Map

Example 3 – Car Assembly Line

BOM and BOP

Example

7

Bill Of Materials

7

Example – BOM on an engineering drawing

ITEM NO.	PART NUMBER	PART NAME	DESCRIPTION	SOURCE	QTY.
1	UCP21-AST	PILLOW BLOCK BEARING	AST - METRIC SERIES	PURCHASED	1
2	3GAA103001-BSE	ELECTRIC MOTOR 1.5KW	ABB - M2AA100L 6	PURCHASED	1
3	7493251	BASE FRAME	MACHINED	FABRICATED	1
4	7493250	BEARING MOUNTING PAD	MACHINED	FABRICATED	1
5	91292A241	SOCKET HEAD SCREWS	MCMASTER-CARR	PURCHASED	2
6	7493252	MOTOR SHAFT	HARDENED STEEL MACHINED	PURCHASED	1
7	91292A274	SOCKET HEAD SCREWS	MCMASTER-CARR	PURCHASED	4
8	7493254	MOTOR MOUNTING PAD	MACHINED	FABRICATED	1

www.build4scale.org

BOM/BOP

Case study 1 – LED light bulb

Background:

Hyperion is developing a LED bulb that will replace the conventional high-intensity discharge (HID), metal halide, and high-pressure sodium bulbs used in ornamental sidewalk lamps. The bulb referred to here as the B1 has developed through two major iterations, the B1-a and the B1-b, with numerous development iterations between the versions

Note: Throughout the Build4Scale modules, we'll include product case studies that illustrate what one company experienced as they were developing their products. We have changed the company name and anonymized their product, but we hope that their experience will help you avoid the pitfalls they encountered and shed light on the lessons they learned along the way.

Bill Of Materials

Case study 1 – LED light bulb (cont.)

- Using the BOM, Hyperion was able to identify which components would provide the most overall value for product cost reduction and design optimization.
- Instead of looking at every single component in the BOM, Hyperion was able to focus its attention on a few components that would greatly affect cost and time
- In this case, the BOM was used to identify component hierarchy based on the function, materials, and cost of production
- Hyperion was able to clearly identify the fan assembly as a prime target for cost reduction with a percentage of total cost at scale of 43.2%

Bill Of Materials

Case study 1 – LED light bulb (cont.)

Category	ltem	Order QTY	QTY	U	nit Cost	Total Cost	Cost@ 1000 QTY	Ratio
	Bulb Converter	1	1	\$	2.18	\$ 2.18	\$ 2,180.00	28.5%
	Fan Assembly	1	1	\$	3.30	\$ 3.30	\$ 3,300.00	43.2%
	Screw	2	10	\$	0.01	\$ 0.03	\$ 26.00	0.3%
	Converter Harness	1	1	\$	0.45	\$ 0.45	\$ 450.00	5.9%
Core assembly	Module Harness	1	1	\$	0.23	\$ 0.23	\$ 230.00	3.0%
	O-Ring	1	1	\$	0.26	\$ 0.26	\$ 260.00	3.4%
	Double Sided Tape	24	1	\$	0.01	\$ 0.22	\$ 216.00	2.8%
	Copper Tape	2	1	\$	0.49	\$ 0.97	\$ 974.00	12.8%
	Sub Total	33		\$	6.93	\$ 7.64	\$ 7,636.00	100.0%

BOM and BOP

Bill Of Process

Case study 1 – LED light bulb (cont.)

7

40

By coding their production into a running list of processes (or BOP) and tracking iterations using version control, the company documented changes in their prototype production processes to later be carried into a manufacturing iteration

The BOP and the BOM are the foundation upon which further product development can be built from prototype to manufacturing. They will be a continuous trunk of information running through all future iterations

Manufacturing Process

Case study 1 – LED light bulb (cont.)

- As the team began production of the lamp end cap, the quantity of production began to dictate the manufacturing process
- The decision came down to the manufacturing process that had the lowest cost
- Initial prototyping was completed at the Los Angeles Advanced Cleantech Incubator (LACI) Prototyping Center to allow for rapid iteration development

Manufacturing Process

Case study 1 – LED light bulb (cont.)

As the demonstration sites were coming online, Hyperion moved production to a silicon mold cast contractor to handle the increased quantities

Number of Parts Needed	Manufacturing Process	Production Site		
1-100	3D Printing	Prototyping Center		
50-500	Silicon Mold Casting	Contractor		
2,000-10,000	Injection Molding	Contractor		

M and ROP

Tradeoffs

BOM and **BOP**

So many tradeoffs—how do you evaluate?

Material tradeoffs:

- Different materials require different tools and production processes, each with their own trade-offs
- Reduced cost of materials may mean higher per-piece price with volume if the new material requires a more expensive production process
- More robust materials may require larger investment in tooling and capital equipment
- Lighter weight does not necessarily mean less material

See Module 3B for more details on material selection

Tradeoffs (cont.)

Manufacturing process tradeoffs:

- Lower volumes require different manufacturing process to control tooling and capital equipment investments
- Switch to high volume with less takt time process may require major investment in capital equipment but lower per-piece price over time

See Module 3C for more details on manufacturing processes

Material Selection

Case study 2 - Outdoor LED retrofit bulb

 Determine the operating environment: Industrial/power plants—the lamp would experience high temperatures and vibration 2. Summarize and prioritize the functional needs based on the operating environment (ideally quantify needs):

- -a. Structurally strong
- b. Operate at high heat (500 – 700 °C)
- -c. Cost effective

3. Explore your material options based on availability, general cost, weight, manufacturability, etc. Determine options to be:

- Polycarbonate
- Stainless Steel

Material Selection

Case study 2 - Outdoor LED retrofit bulb (cont.)

4. With material selection narrowed down evaluate each based on three criteria in step 2 **5**. Final decision: Because of the unique operating conditions, we preferred **stainless steel**

Key determining factors are circled below:

Material	Operating T (°C) Streng	th Weight	Cost
Polycarbonate	100	Lowe	r Lighter	Lower
Stainless steel	800	Highe	r Heavier	Higher

- Stainless steel Not as attractive because of higher cost and weight but still preferred due to strength and operation in heat
- Polycarbonate Attractive because it's lower in weight and cost but these are secondary factors

BOM and **BOP**

BOM and **BOP**

Material	Low Volume	Medium Volume	High Volume		
	Higher per-piece cost, Low-cost tooling	Lower per-piece cost, Higher tooling cost	Lowest per-piece cost, Higher capital equipment, tooling cost		
Metal	Machine from Billet, Additive Mfg	Soft Tooling (Casting)	Hard Tooling (Stamping Die, Extrusion)		
Plastic	Machine from Billet, Additive Mfg	Rotational Molding, Blow Molding, Thermoforming	Injection Molding, Extrusion, Pultrusion		
Composite	Hand Layup, Additive Mfg	RTM, VARTM, Compression Molding	Injection Molding, Pultrusion, Filament Winding		

The use of materials and manufacturing process is not only dictated by volume but also by tolerance requirements and design priorities

Note: Definition of processes found on the next page

See Module 3B and 3C for more details

Description of Molding Methods

- Resin transfer molding (RTM) is an increasingly common form of molding, using liquid composite <u>https://www.azom.com/article.aspx?ArticleID=8620</u>
- Vacuum Assisted Resin Transfer Molding (VARTM) or Vacuum Injected Molding (VIM) is a closed mold, out of autoclave (OOA) composite manufacturing process <u>https://en.wikipedia.org/wiki/Vacuum_assisted_resin_transfer_molding</u>
- Pultrusion is a continuous process for manufacture of <u>composite</u> <u>materials</u> with constant cross-section <u>https://en.wikipedia.org/wiki/Pultrusion</u>
- □ Hand lay-up is a molding process where fiber reinforcements are placed by hand then wet with resin http://www.coremt.com/processes/hand-lay-up/
- Compression molding is a forming process in which a plastic material is placed directly into a heated metal mold, then is softened by the heat, and forced to conform to the shape of the mold as the mold closes once molding is completed excess flash are removed, in-order to get best finish <u>https://en.wikipedia.org/wiki/Compression_molding</u>

Key considerations

Controlling variability in BOM and BOP:

- □ Adds to cost, complexity
- Impacts quality control, inventory readiness, parts tracking, supplier contracts

Parts planning:

- Consider a parts tracking system (for inventory ordering/control and quality traceability)
- □ Highly recommend a plan for each part!

Process documentation:

- □ Work flow process mapping (value stream mapping)
- ISO process documentation

BOM and

49

7

BOM and BOP

Scale-Up Effects On BOM/BOP

Summary

General molding resource guide

http://www.plasticmoulding.ca/techniques/compression moulding.htm